EconPapers    
Economics at your fingertips  
 

Solving Nonlinear Programming Problems with Stochastic Objective Functions

William T. Ziemba

Journal of Financial and Quantitative Analysis, 1972, vol. 7, issue 3, 1809-1827

Abstract: In many nonlinear programming applications the objective function has an inherent uncertainty that depends upon a set of random variables that have a known distribution. If one wishes to optimize the expectation of the objective, as suggested by the expected utility theorem, then as is shown here one can often solve such problems by modifying standard nonlinear programming algorithms. To illustrate what is involved, the details and justification for the application of the interior parametric sequential unconstrained maximization technique and the generalized programming method for the solution of such problems are given. Some related problems with stochastic constraints for which the solution method applies are mentioned and an example of a portfolio selection problem is given.

Date: 1972
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:jfinqa:v:7:y:1972:i:03:p:1809-1827_01

Access Statistics for this article

More articles in Journal of Financial and Quantitative Analysis from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:jfinqa:v:7:y:1972:i:03:p:1809-1827_01