Too soon to tell if the US intelligence community prediction market is more accurate than intelligence reports: Commentary on Stastny and Lehner (2018)
David R. Mandel
Judgment and Decision Making, 2019, vol. 14, issue 3, 288-292
Abstract:
Stastny and Lehner (2018) reported a study comparing the forecast accuracy of a US intelligence community prediction market (ICPM) to traditionally produced intelligence reports. Five analysts unaffiliated with the intelligence reports imputed forecasts from the reports after stating their personal forecasts on the same forecasting questions. The authors claimed that the accuracy of the ICPM was significantly greater than that of the intelligence reports and suggest this may have been due to methods that harness crowd wisdom. However, additional analyses conducted here show that the imputer’s personal forecasts, which were made individually, were as accurate as ICPM forecasts. In fact, their updated personal forecasts (made after reading the intelligence reports) were marginally more accurate than ICPM forecasts. Imputed forecasts are also strongly correlated with the imputers’ personal forecasts, casting doubt on the degree to which the imputation was in fact a reliably inter-subjective assessment of what intelligence reports implied about the forecasting questions. Alternative methods for comparing intelligence community forecasting methods are discussed.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:judgdm:v:14:y:2019:i:3:p:288-292_4
Access Statistics for this article
More articles in Judgment and Decision Making from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().