Bayesian and frequentist analysis of True and Error models
Michael H. Birnbaum
Judgment and Decision Making, 2019, vol. 14, issue 5, 608-616
Abstract:
Birnbaum and Quispe-Torreblanca (2018) presented a frequentist analysis of a family of six True and Error (TE) models for the analysis of two choice problems presented twice to each participant. Lee (2018) performed a Bayesian analysis of the same models, and found very similar parameter estimates and conclusions for the same data. He also discussed some potential differences between Bayesian and frequentist analyses and interpretations for model comparisons. This paper responds to certain points of possible controversy regarding model selection that attempt to take into account the concept of flexibility or complexity of a model. Reasons to question the use of Bayes factors to decide among models differing in fit and complexity are presented. The partially nested inter-relations among the six TE models are represented in a Venn diagram. Another view of model complexity is presented in terms of possible sets of data that could fit a model rather than in terms of possible sets of parameters that do or do not fit a given set of data. It is argued that less complex theories are not necessarily more likely to be true, and when the space of all possible theories is not well-defined, one should be cautious in interpreting calculated posterior probabilities that appear to prove a theory to be true.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:judgdm:v:14:y:2019:i:5:p:608-616_8
Access Statistics for this article
More articles in Judgment and Decision Making from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().