EconPapers    
Economics at your fingertips  
 

A model-based approach for the analysis of the calibration of probability judgments

David V. Budescu and Timothy R. Johnson

Judgment and Decision Making, 2011, vol. 6, issue 8, 857-869

Abstract: The calibration of probability or confidence judgments concerns the association between the judgments and some estimate of the correct probabilities of events. Researchers rely on estimates using relative frequencies computed by aggregating data over observations. We show that this approach creates conceptual problems, and may result in the confounding of explanatory variables or unstable estimates. To circumvent these problems we propose using probability estimates obtained from statistical models—specifically mixed models for binary data—in the analysis of calibration. We illustrate this methodology by re-analyzing data from a published study and comparing the results from this approach to those based on relative frequencies. The model-based estimates avoid problems with confounding variables and provided more precise estimates, resulting in better inferences.

Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:judgdm:v:6:y:2011:i:8:p:857-869_15

Access Statistics for this article

More articles in Judgment and Decision Making from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:judgdm:v:6:y:2011:i:8:p:857-869_15