Multi-attribute utility models as cognitive search engines
Pantelis P. Analytis,
Amit Kothiyal and
Konstantinos Katsikopoulos
Judgment and Decision Making, 2014, vol. 9, issue 5, 403-419
Abstract:
In optimal stopping problems, decision makers are assumed to search randomly to learn the utility of alternatives; in contrast, in one-shot multi-attribute utility optimization, decision makers are assumed to have perfect knowledge of utilities. We point out that these two contexts represent the boundaries of a continuum, of which the middle remains uncharted: How should people search intelligently when they possess imperfect information about the alternatives? We assume that decision makers first estimate the utility of each available alternative and then search the alternatives in order of their estimated utility until expected benefits are outweighed by search costs. We considered three well-known models for estimating utility: (i) a linear multi-attribute model, (ii) equal weighting of attributes, and (iii) a single-attribute heuristic. We used 12 real-world decision problems, ranging from consumer choice to industrial experimentation, to measure the performance of the three models. The full model (i) performed best on average but its simplifications (ii and iii) also had regions of superior performance. We explain the results by analyzing the impact of the models’ utility order and estimation error.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:judgdm:v:9:y:2014:i:5:p:403-419_4
Access Statistics for this article
More articles in Judgment and Decision Making from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().