EconPapers    
Economics at your fingertips  
 

COMPUTING MARKOV-PERFECT OPTIMAL POLICIES IN BUSINESS-CYCLE MODELS

Richard Dennis and Tatiana Kirsanova

Macroeconomic Dynamics, 2016, vol. 20, issue 7, 1850-1872

Abstract: Time inconsistency is an essential feature of many policy problems. This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler equations, and parameterized shadow prices. In the context of a business cycle model in which a fiscal authority chooses government spending and income taxation optimally, although lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive fiscal authority and/or inequality constraints on government spending. We show that the risk-sensitive fiscal authority lowers government spending and income taxation, reducing the disincentive to accumulate wealth that households face.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
Working Paper: Computing Markov-Perfect Optimal Policies in Business-Cycle Models (2014) Downloads
Working Paper: Computing Markov-Perfect Optimal Policies in Business-Cycle Models (2014) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:20:y:2016:i:07:p:1850-1872_00

Access Statistics for this article

More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:macdyn:v:20:y:2016:i:07:p:1850-1872_00