MULTIVARIATE TREND–CYCLE EXTRACTION WITH THE HODRICK–PRESCOTT FILTER
Federico Poloni () and
Giacomo Sbrana
Macroeconomic Dynamics, 2017, vol. 21, issue 6, 1336-1360
Abstract:
The Hodrick–Prescott filter represents one of the most popular methods for trend–cycle extraction in macroeconomic time series. In this paper we provide a multivariate generalization of the Hodrick–Prescott filter, based on the seemingly unrelated time series approach. We first derive closed-form expressions linking the signal–noise matrix ratio to the parameters of the VARMA representation of the model. We then show that the parameters can be estimated using a recently introduced method, called “Moment Estimation Through Aggregation (META).” This method replaces traditional multivariate likelihood estimation with a procedure that requires estimating univariate processes only. This makes the estimation simpler, faster, and better behaved numerically. We prove that our estimation method is consistent and asymptotically normal distributed for the proposed framework. Finally, we present an empirical application focusing on the industrial production of several European countries.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:21:y:2017:i:06:p:1336-1360_00
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().