EULER EQUATION ESTIMATION ON MICRO DATA
Sule Alan,
Kadir Atalay and
Thomas Crossley ()
Macroeconomic Dynamics, 2019, vol. 23, issue 8, 3267-3292
Abstract:
Consumption Euler equations are important tools in empirical macroeconomics. When estimated on micro data, they are typically linearized, so standard IV or GMM methods can be employed to deal with the measurement error that is endemic to survey data. However, linearization, in turn, may induce serious approximation bias. We numerically solve and simulate six different life-cycle models, and then use the simulated data as the basis for a series of Monte Carlo experiments in which we evaluate the performance of linearized Euler equation estimation. We sample from the simulated data in ways that mimic realistic data structures. The linearized Euler equation leads to biased estimates of the EIS, but that bias is modest when there is a sufficient time dimension to the data, and sufficient variation in interest rates. However, a sufficient time dimension can only realistically be achieved with a synthetic cohort. Estimates from synthetic cohorts of sufficient length, while often exhibiting small mean bias, are quite imprecise. We also show that in all data structures, estimates are less precise in impatient models.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Euler Equation Estimation on Micro Data (2012) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:23:y:2019:i:8:p:3267-3292_8
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().