GLOBALLY INDETERMINATE GROWTH PATHS IN THE LUCAS MODEL OF ENDOGENOUS GROWTH
Giovanni Bella,
Paolo Mattana and
Beatrice Venturi
Macroeconomic Dynamics, 2021, vol. 25, issue 3, 693-704
Abstract:
This paper shows that global indeterminacy may characterize the three-dimensional vector field implied by the Lucas [(1988) Journal of Monetary Economics 22, 3–42] endogenous growth model. To achieve this result, we demonstrate the emergence of a family of homoclinic orbits connecting the steady state to itself in backward and forward time, when the stable and unstable manifolds are locally governed by real eigenvalues. In this situation, we prove that if the saddle quantity is negative, and other genericity conditions are fulfilled, a stable limit cycle bifurcates from the homoclinic orbit. Orbits originating in a tubular neighborhood of the homoclinic orbit are then bound to converge to this limit cycle, creating the conditions for the onset of global indeterminacy. Some economic intuitions related to this phenomenon are finally explored.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:25:y:2021:i:3:p:693-704_6
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().