AUTOMATION, PARTIAL AND FULL
Jakub Growiec
Macroeconomic Dynamics, 2022, vol. 26, issue 7, 1731-1755
Abstract:
When some steps of a complex, multi-step task are automated, the demand for human work in the remaining complementary sub-tasks goes up. In contrast, when the task is fully automated, the demand for human work declines. Upon aggregation to the macroeconomic scale, partial automatability of complex tasks creates a bottleneck of development, where further growth is constrained by the scarcity of essential human work. This bottleneck is removed once the tasks become fully automatable. Theoretical analysis using a two-level nested constant elasticity of substitution production function specification demonstrates that the shift from partial to full automation generates a non-convexity: humans and machines switch from complementary to substitutable, and the share of output accruing to human workers switches from an upward to a downward trend. This process has implications for inequality, the risk of technological unemployment, and the likelihood of a secular stagnation.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Automation, Partial and Full (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:26:y:2022:i:7:p:1731-1755_2
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().