NONLINEAR DYNAMICS AND CHAOS PART I: A GEOMETRICAL APPROACH
Alfredo Medio
Macroeconomic Dynamics, 1998, vol. 2, issue 4, 505-532
Abstract:
This paper is the first part of a two-part survey reviewing some basic concepts and methods of the modern theory of dynamical systems. The survey is introduced by a preliminary discussion of the relevance of nonlinear dynamics and chaos for economics. We then discuss the dynamic behavior of nonlinear systems of difference and differential equations such as those commonly employed in the analysis of economically motivated models. Part I of the survey focuses on the geometrical properties of orbits. In particular, we discuss the notion of attractor and the different types of attractors generated by discrete- and continuous-time dynamical systems, such as fixed and periodic points, limit cycles, quasiperiodic and chaotic attractors. The notions of (noninteger) fractal dimension and Lyapunov characteristic exponent also are explained, as well as the main routes to chaos.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:2:y:1998:i:04:p:505-532_00
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().