EconPapers    
Economics at your fingertips  
 

NONLINEAR DYNAMICS AND CHAOS PART II: ERGODIC APPROACH

Alfredo Medio

Macroeconomic Dynamics, 1999, vol. 3, issue 1, 84-114

Abstract: This is the second part of a two-part survey of the modern theory of nonlinear dynamical systems. We focus on the study of statistical properties of orbits generated by maps, a field of research known as ergodic theory. After introducing some basic concepts of measure theory, we discuss the notions of invariant and ergodic measures and provide examples of economic applications. The question of attractiveness and observability, already considered in Part I, is revisited and the concept of natural, or physical, measure is explained. This theoretical apparatus then is applied to the question of predictability of dynamical systems, and the notion of metric entropy is discussed. Finally, we consider the class of Bernoulli dynamical systems and discuss the possibility of distinguishing orbits of deterministic chaotic systems and realizations of stochastic processes.

Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:3:y:1999:i:01:p:84-114_01

Access Statistics for this article

More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:macdyn:v:3:y:1999:i:01:p:84-114_01