DYNAMIC EQUIVALENCE PRINCIPLE IN LINEAR RATIONAL EXPECTATIONS MODELS
Stephane Gauthier
Macroeconomic Dynamics, 2003, vol. 7, issue 1, 63-88
Abstract:
Linear models with infinite horizon generally admit infinitely many rational expectations solutions. Consequently, some additional selection devices are needed to narrow the set of relevant solutions. The viewpoint of this paper is that a solution will be more likely to arise if it is locally determinate (i.e., locally isolated), locally immune to sunspots, and locally stable under learning. These three criteria are applied to solutions of linear univariate models along which the level of the state variable evolves through time. In such models the equilibrium behavior of the level of the state variable is described by a linear recursive equation characterized by the set of its coefficients. The main innovation of this paper is to define new perfect-foresight dynamics whose fixed points are these sets of coefficients, thus allowing us to study the property of determinacy of these sets, or, equivalently, of the associated solutions. It is shown that only one solution is locally determinate in the new dynamics. It is also locally immune to sunspots and locally stable under myopic learning. This solution corresponds to the saddle path in the saddle-point case.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Dynamic equivalence principle in linear rational expectations models (2003) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:macdyn:v:7:y:2003:i:01:p:63-88_01
Access Statistics for this article
More articles in Macroeconomic Dynamics from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().