EconPapers    
Economics at your fingertips  
 

Circular specifications and “predicting” with information from the future: Errors in the empirical SAOM–TERGM comparison of Leifeld & Cranmer

Per Block, James Hollway, Christoph Stadtfeld, Johan Koskinen and Tom Snijders

Network Science, 2022, vol. 10, issue 1, 3-14

Abstract: We review the empirical comparison of Stochastic Actor-oriented Models (SAOMs) and Temporal Exponential Random Graph Models (TERGMs) by Leifeld & Cranmer in this journal [Network Science 7(1):20–51, 2019]. When specifying their TERGM, they use exogenous nodal attributes calculated from the outcome networks’ observed degrees instead of endogenous ERGM equivalents of structural effects as used in the SAOM. This turns the modeled endogeneity into circularity and obtained results are tautological. In consequence, their out-of-sample predictions using TERGMs are based on out-of-sample information and thereby predict the future using observations from the future. Thus, their analysis rests on erroneous model specifications that invalidate the article’s conclusions. Finally, beyond these specific points, we argue that their evaluation metric—tie-level predictive accuracy—is unsuited for the task of comparing model performance.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:10:y:2022:i:1:p:3-14_1

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:10:y:2022:i:1:p:3-14_1