EconPapers    
Economics at your fingertips  
 

Network classification-based structural analysis of real networks and their model-generated counterparts

Marcell Nagy and Roland Molontay

Network Science, 2022, vol. 10, issue 2, 146-169

Abstract: Data-driven analysis of complex networks has been in the focus of research for decades. An important area of research is to study how well real networks can be described with a small selection of metrics, furthermore how well network models can capture the relations between graph metrics observed in real networks. In this paper, we apply machine-learning techniques to investigate the aforementioned problems. We study 500 real-world networks along with 2000 synthetic networks generated by four frequently used network models with previously calibrated parameters to make the generated graphs as similar to the real networks as possible. This paper unifies several branches of data-driven complex network analysis, such as the study of graph metrics and their pair-wise relationships, network similarity estimation, model calibration, and graph classification. We find that the correlation profiles of the structural measures significantly differ across network domains and the domain can be efficiently determined using a small selection of graph metrics. The structural properties of the network models with fixed parameters are robust enough to perform parameter calibration. The goodness-of-fit of the network models highly depends on the network domain. By solving classification problems, we find that the models lack the capability of generating a graph with a high clustering coefficient and relatively large diameter simultaneously. On the other hand, models are able to capture exactly the degree-distribution-related metrics.

Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:10:y:2022:i:2:p:146-169_3

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:10:y:2022:i:2:p:146-169_3