Random networks grown by fusing edges via urns
Kiran R. Bhutani,
Ravi Kalpathy and
Hosam Mahmoud
Network Science, 2022, vol. 10, issue 4, 347-360
Abstract:
Many classic networks grow by hooking small components via vertices. We introduce a class of networks that grows by fusing the edges of a small graph to an edge chosen uniformly at random from the network. For this random edge-hooking network, we study the local degree profile, that is, the evolution of the average degree of a vertex over time. For a special subclass, we further determine the exact distribution and an asymptotic gamma-type distribution. We also study the “core,” which consists of the well-anchored edges that experience fusing. A central limit theorem emerges for the size of the core. At the end, we look at an alternative model of randomness attained by preferential hooking, favoring edges that experience more fusing. Under preferential hooking, the core still follows a Gaussian law but with different parameters. Throughout, Pólya urns are systematically used as a method of proof.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:10:y:2022:i:4:p:347-360_2
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().