Generalized graphlet kernels for probabilistic inference in sparse graphs
Jose Lugo-Martinez and
Predrag Radivojac
Network Science, 2014, vol. 2, issue 2, 254-276
Abstract:
Graph kernels for learning and inference on sparse graphs have been widely studied. However, the problem of designing robust kernel functions that can effectively compare graph neighborhoods in the presence of noisy and complex data remains less explored. Here we propose a novel graph-based kernel method referred to as an edit distance graphlet kernel. The method was designed to add flexibility in capturing similarities between local graph neighborhoods as a means of probabilistically annotating vertices in sparse and labeled graphs. We report experiments on nine real-life data sets from molecular biology and social sciences and provide evidence that the new kernels perform favorably compared to established approaches. However, when both performance accuracy and run time are considered, we suggest that edit distance kernels are best suited for inference on graphs derived from protein structures. Finally, we demonstrate that the new approach facilitates simple and principled ways of integrating domain knowledge into classification and point out that our methodology extends beyond classification; e.g. to applications such as kernel-based clustering of graphs or approximate motif finding. Availability: www.sourceforge.net/projects/graphletkernels/
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:2:y:2014:i:02:p:254-276_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().