EconPapers    
Economics at your fingertips  
 

Algorithms for generating large-scale clustered random graphs

Cheng Wang, Omar Lizardo and David Hachen

Network Science, 2014, vol. 2, issue 3, 403-415

Abstract: Real-world networks are often compared to random graphs to assess whether their topological structure could be a result of random processes. However, a simple random graph in large scale often lacks social structure beyond the dyadic level. As a result we need to generate clustered random graph to compare the local structure at higher network levels. In this paper a generalized version of Gleeson's algorithm G(VS, VT, ES, ET, S, T) is advanced to generate a clustered random graph in large-scale which persists the number of vertices |V|, the number of edges |E|, and the global clustering coefficient CΔ as in the real network and it works successfully for nine large-scale networks. Our new algorithm also has advantages in randomness evaluation and computation efficiency when compared with the existing algorithms.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:2:y:2014:i:03:p:403-415_00

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:2:y:2014:i:03:p:403-415_00