Selection and influence in cultural dynamics*
David Kempe,
Jon Kleinberg,
Sigal Oren and
Aleksandrs Slivkins
Network Science, 2016, vol. 4, issue 1, 1-27
Abstract:
One of the fundamental principles driving diversity or homogeneity in domains such as cultural differentiation, political affiliation, and product adoption is the tension between two forces: influence (the tendency of people to become similar to others they interact with) and selection (the tendency to be affected most by the behavior of others who are already similar). Influence tends to promote homogeneity within a society, while selection frequently causes fragmentation. When both forces act simultaneously, it becomes an interesting question to analyze which societal outcomes should be expected. To study this issue more formally, we analyze a natural stylized model built upon active lines of work in political opinion formation, cultural diversity, and language evolution. We assume that the population is partitioned into “types” according to some traits (such as language spoken or political affiliation). While all types of people interact with one another, only people with sufficiently similar types can possibly influence one another. The “similarity” is captured by a graph on types in which individuals of the same or adjacent types can influence one another. We achieve an essentially complete characterization of (stable) equilibrium outcomes and prove convergence from all starting states. We also consider generalizations of this model.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:4:y:2016:i:01:p:1-27_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().