Interplay between signaling network design and swarm dynamics
André Sekunda,
Mohammad Komareji and
Roland Bouffanais
Network Science, 2016, vol. 4, issue 2, 244-265
Abstract:
Distributed information transfer is of paramount importance to the effectiveness of dynamic collective behaviors, especially when a swarm is confronted with complex environmental circumstances. Recently, the signaling network of interaction underlying such effective information transfers has been revealed in the particular case of bird flocks governed by a topological interaction. Such biological systems are known to be evolutionary optimized, but are also constrained by the very nature of the signaling mechanisms—owing to intrinsic limitations in sensory modalities—enabling communication among individuals. Here, we propose that artificial swarm design can be tackled from the angle of signaling network design. To this aim, we use different network models to investigate the impact of some network structural properties on the effectiveness of a specific emergent swarming behavior, namely global consensus. Two new network models are introduced, which together with the well-known Watts–Strogatz model form the basis for an analysis of the relationship between clustering, shortest path and speed to consensus. A network-theoretic approach combined with spectral graph theory tools are used to propose some signaling network design principles. Eventually, one key design principle—a concomitant reduction in clustering and connecting path—is successfully tested on simulations of swarms of self-propelled particles.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:4:y:2016:i:02:p:244-265_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().