EconPapers    
Economics at your fingertips  
 

Spectral ranking

Sebastiano Vigna

Network Science, 2016, vol. 4, issue 4, 433-445

Abstract: We sketch the history of spectral ranking—a general umbrella name for techniques that apply the theory of linear maps (in particular, eigenvalues and eigenvectors) to matrices that do not represent geometric transformations, but rather some kind of relationship between entities. Albeit recently made famous by the ample press coverage of Google's PageRank algorithm, spectral ranking was devised more than 60 years ago, almost exactly in the same terms, and has been studied in psychology, social sciences, bibliometrics, economy, and choice theory. We describe the contribution given by previous scholars in precise and modern mathematical terms: Along the way, we show how to express in a general way damped rankings, such as Katz's index, as dominant eigenvectors of perturbed matrices, and then use results on the Drazin inverse to go back to the dominant eigenvectors by a limit process. The result suggests a regularized definition of spectral ranking that yields for a general matrix a unique vector depending on a boundary condition.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:4:y:2016:i:04:p:433-445_00

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:4:y:2016:i:04:p:433-445_00