Opinion-based centrality in multiplex networks: A convex optimization approach
Alexandre Reiffers-Masson and
Vincent Labatut
Network Science, 2017, vol. 5, issue 2, 213-234
Abstract:
Most people simultaneously belong to several distinct social networks, in which their relations can be different. They have opinions about certain topics, which they share and spread on these networks, and are influenced by the opinions of other persons. In this paper, we build upon this observation to propose a new nodal centrality measure for multiplex networks. Our measure, called Opinion centrality, is based on a stochastic model representing opinion propagation dynamics in such a network. We formulate an optimization problem consisting in maximizing the opinion of the whole network when controlling an external influence able to affect each node individually. We find a mathematical closed form of this problem, and use its solution to derive our centrality measure. According to the opinion centrality, the more a node is worth investing external influence, and the more it is central. We perform an empirical study of the proposed centrality over a toy network, as well as a collection of real-world networks. Our measure is generally negatively correlated with existing multiplex centrality measures, and highlights different types of nodes, accordingly to its definition.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:5:y:2017:i:02:p:213-234_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().