EconPapers    
Economics at your fingertips  
 

Choosing the number of groups in a latent stochastic blockmodel for dynamic networks

Riccardo Rastelli, Pierre Latouche and Nial Friel

Network Science, 2018, vol. 6, issue 4, 469-493

Abstract: Latent stochastic blockmodels are flexible statistical models that are widely used in social network analysis. In recent years, efforts have been made to extend these models to temporal dynamic networks, whereby the connections between nodes are observed at a number of different times. In this paper, we propose a new Bayesian framework to characterize the construction of connections. We rely on a Markovian property to describe the evolution of nodes' cluster memberships over time. We recast the problem of clustering the nodes of the network into a model-based context, showing that the integrated completed likelihood can be evaluated analytically for a number of likelihood models. Then, we propose a scalable greedy algorithm to maximize this quantity, thereby estimating both the optimal partition and the ideal number of groups in a single inferential framework. Finally, we propose applications of our methodology to both real and artificial datasets.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:6:y:2018:i:04:p:469-493_00

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:6:y:2018:i:04:p:469-493_00