The similarity of global value chains: A network-based measure
Zhen Zhu,
Greg Morrison,
Michelangelo Puliga,
Alessandro Chessa and
Massimo Riccaboni ()
Network Science, 2018, vol. 6, issue 4, 607-632
Abstract:
International trade has been increasingly organized in the form of global value chains (GVCs). In this paper, we provide a new method for comparing GVCs across countries and over time. First, we use the World Input–Output Database (WIOD) to construct both the upstream and the downstream global value networks. Second, we introduce a network-based measure of node similarity to compare the GVCs between any pair of countries for each sector and each year available in the WIOD. Our network-based similarity is a better measure for node comparison than the existing ones because it takes into account all the direct and indirect relationships between the country–sector pairs, is applicable to both directed and weighted networks with self-loops, and takes into account externally defined node attributes. As a result, our measure of similarity reveals the most intensive interactions among the GVCs across countries and over time. From 1995 to 2011, the average similarity between sectors and countries have clear increasing trends, which are temporarily interrupted by the recent economic crisis. This measure of the similarity of GVCs provides quantitative answers to important questions about dependency, sustainability, risk, and competition in the global production system.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: The Similarity of Global Value Chains: A Network-Based Measure (2015) 
Working Paper: The Similarity of Global Value Chains: A Network-Based Measure (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:6:y:2018:i:04:p:607-632_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().