EconPapers    
Economics at your fingertips  
 

A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model

Philip Leifeld and Skyler J. Cranmer

Network Science, 2019, vol. 7, issue 1, 20-51

Abstract: The temporal exponential random graph model (TERGM) and the stochastic actor-oriented model (SAOM, e.g., SIENA) are popular models for longitudinal network analysis. We compare these models theoretically, via simulation, and through a real-data example in order to assess their relative strengths and weaknesses. Though we do not aim to make a general claim about either being superior to the other across all specifications, we highlight several theoretical differences the analyst might consider and find that with some specifications, the two models behave very similarly, while each model out-predicts the other one the more the specific assumptions of the respective model are met.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:7:y:2019:i:01:p:20-51_00

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:7:y:2019:i:01:p:20-51_00