Clustering ensembles of social networks
Tracy M. Sweet,
Abby Flynt and
David Choi
Network Science, 2019, vol. 7, issue 2, 141-159
Abstract:
Recently there has been significant work in the social sciences involving ensembles of social networks, that is, multiple, independent, social networks such as students within schools or employees within organizations. There remains, however, very little methodological work on exploring these types of data structures. We present methods for clustering social networks with observed nodal class labels, based on statistics of walk counts between the nodal classes. We extend this method to consider only non-backtracking walks, and introduce a method for normalizing the counts of long walk sequences using those of shorter ones. We then present a method for clustering networks based on these statistics to explore similarities among networks. We demonstrate the utility of this method on simulated network data, as well as on advice-seeking networks in education.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:7:y:2019:i:02:p:141-159_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().