A paradigm for longitudinal complex network analysis over patient cohorts in neuroscience
Heather Shappell,
Yorghos Tripodis,
Ronald J. Killiany and
Eric D. Kolaczyk
Network Science, 2019, vol. 7, issue 2, 196-214
Abstract:
The study of complex brain networks, where structural or functional connections are evaluated to create an interconnected representation of the brain, has grown tremendously over the past decade. Many of the statistical network science tools for analyzing brain networks have been developed for cross-sectional studies and for the analysis of static networks. However, with both an increase in longitudinal study designs and an increased interest in the neurological network changes that occur during the progression of a disease, sophisticated methods for longitudinal brain network analysis are needed. We propose a paradigm for longitudinal brain network analysis over patient cohorts, with the key challenge being the adaptation of Stochastic Actor-Oriented Models to the neuroscience setting. Stochastic Actor-Oriented Models are designed to capture network dynamics representing a variety of influences on network change in a continuous-time Markov chain framework. Network dynamics are characterized through both endogenous (i.e. network related) and exogenous effects, where the latter include mechanisms conjectured in the literature. We outline an application to the resting-state functional magnetic resonance imaging setting with data from the Alzheimer’s Disease Neuroimaging Initiative study. We draw illustrative conclusions at the subject level and make a comparison between elderly controls and individuals with Alzheimer’s disease.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:7:y:2019:i:02:p:196-214_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().