EconPapers    
Economics at your fingertips  
 

On spectral embedding performance and elucidating network structure in stochastic blockmodel graphs

Joshua Cape, Minh Tang and Carey E. Priebe

Network Science, 2019, vol. 7, issue 3, 269-291

Abstract: Statistical inference on graphs often proceeds via spectral methods involving low-dimensional embeddings of matrix-valued graph representations such as the graph Laplacian or adjacency matrix. In this paper, we analyze the asymptotic information-theoretic relative performance of Laplacian spectral embedding and adjacency spectral embedding for block assignment recovery in stochastic blockmodel graphs by way of Chernoff information. We investigate the relationship between spectral embedding performance and underlying network structure (e.g., homogeneity, affinity, core-periphery, and (un)balancedness) via a comprehensive treatment of the two-block stochastic blockmodel and the class of K-blockmodels exhibiting homogeneous balanced affinity structure. Our findings support the claim that, for a particular notion of sparsity, loosely speaking, “Laplacian spectral embedding favors relatively sparse graphs, whereas adjacency spectral embedding favors not-too-sparse graphs.” We also provide evidence in support of the claim that “adjacency spectral embedding favors core-periphery network structure.”

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:7:y:2019:i:03:p:269-291_00

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:7:y:2019:i:03:p:269-291_00