On spectral embedding performance and elucidating network structure in stochastic blockmodel graphs
Joshua Cape,
Minh Tang and
Carey E. Priebe
Network Science, 2019, vol. 7, issue 3, 269-291
Abstract:
Statistical inference on graphs often proceeds via spectral methods involving low-dimensional embeddings of matrix-valued graph representations such as the graph Laplacian or adjacency matrix. In this paper, we analyze the asymptotic information-theoretic relative performance of Laplacian spectral embedding and adjacency spectral embedding for block assignment recovery in stochastic blockmodel graphs by way of Chernoff information. We investigate the relationship between spectral embedding performance and underlying network structure (e.g., homogeneity, affinity, core-periphery, and (un)balancedness) via a comprehensive treatment of the two-block stochastic blockmodel and the class of K-blockmodels exhibiting homogeneous balanced affinity structure. Our findings support the claim that, for a particular notion of sparsity, loosely speaking, “Laplacian spectral embedding favors relatively sparse graphs, whereas adjacency spectral embedding favors not-too-sparse graphs.” We also provide evidence in support of the claim that “adjacency spectral embedding favors core-periphery network structure.”
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:7:y:2019:i:03:p:269-291_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().