Statistical evaluation of spectral methods for anomaly detection in static networks
Tomilayo Komolafe,
A. Valeria Quevedo,
Srijan Sengupta and
William H. Woodall
Network Science, 2019, vol. 7, issue 3, 319-352
Abstract:
The topic of anomaly detection in networks has attracted a lot of attention in recent years, especially with the rise of connected devices and social networks. Anomaly detection spans a wide range of applications, from detecting terrorist cells in counter-terrorism efforts to identifying unexpected mutations during ribonucleic acid transcription. Fittingly, numerous algorithmic techniques for anomaly detection have been introduced. However, to date, little work has been done to evaluate these algorithms from a statistical perspective. This work is aimed at addressing this gap in the literature by carrying out statistical evaluation of a suite of popular spectral methods for anomaly detection in networks. Our investigation on the statistical properties of these algorithms reveals several important and critical shortcomings that we make methodological improvements to address. Further, we carry out a performance evaluation of these algorithms using simulated networks and extend the methods from binary to count networks.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:7:y:2019:i:03:p:319-352_00
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().