EconPapers    
Economics at your fingertips  
 

Linear work generation of R-MAT graphs

Lorenz Hübschle-Schneider and Peter Sanders

Network Science, 2020, vol. 8, issue 4, 543-550

Abstract: R-MAT (for Recursive MATrix) is a simple, widely used model for generating graphs with a power law degree distribution, a small diameter, and communitys structure. It is particularly attractive for generating very large graphs because edges can be generated independently by an arbitrary number of processors. However, current R-MAT generators need time logarithmic in the number of nodes for generating an edge— constant time for generating one bit at a time for node IDs of the connected nodes. We achieve constant time per edge by precomputing pieces of node IDs of logarithmic length. Using an alias table data structure, these pieces can then be sampled in constant time. This simple technique leads to practical improvements by an order of magnitude. This further pushes the limits of attainable graph size and makes generation overhead negligible in most situations.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:8:y:2020:i:4:p:543-550_4

Access Statistics for this article

More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:netsci:v:8:y:2020:i:4:p:543-550_4