Superbubbles as an empirical characteristic of directed networks
Fabian Gärtner,
Felix Kühnl,
Carsten R. Seemann,
Christian Höner Zu Siederdissen and
Peter F. Stadler
Network Science, 2021, vol. 9, issue 1, 49-58
Abstract:
Superbubbles are acyclic induced subgraphs of a digraph with single entrance and exit that naturally arise in the context of genome assembly and the analysis of genome alignments in computational biology. These structures can be computed in linear time and are confined to non-symmetric digraphs. We demonstrate empirically that graph parameters derived from superbubbles provide a convenient means of distinguishing different classes of real-world graphical models, while being largely unrelated to simple, commonly used parameters.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:9:y:2021:i:1:p:49-58_4
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().