Toward a generalized notion of discrete time for modeling temporal networks
Konstantin Kueffner and
Mark Strembeck
Network Science, 2021, vol. 9, issue 4, 443-477
Abstract:
Many real-world networks, including social networks and computer networks for example, are temporal networks. This means that the vertices and edges change over time. However, most approaches for modeling and analyzing temporal networks do not explicitly discuss the underlying notion of time. In this paper, we therefore introduce a generalized notion of discrete time for modeling temporal networks. Our approach also allows for considering nondeterministic time and incomplete data, two issues that are often found when analyzing datasets extracted from online social networks, for example. In order to demonstrate the consequences of our generalized notion of time, we also discuss the implications for the computation of (shortest) temporal paths in temporal networks. In addition, we implemented an R-package that provides programming support for all concepts discussed in this paper. The R-package is publicly available for download.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:9:y:2021:i:4:p:443-477_4
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().