Learning to count: A deep learning framework for graphlet count estimation
Xutong Liu,
Yu-Zhen Janice Chen,
John C. S. Lui and
Konstantin Avrachenkov
Network Science, 2021, vol. 9, issue S1, S23-S60
Abstract:
Graphlet counting is a widely explored problem in network analysis and has been successfully applied to a variety of applications in many domains, most notatbly bioinformatics, social science, and infrastructure network studies. Efficiently computing graphlet counts remains challenging due to the combinatorial explosion, where a naive enumeration algorithm needs O(Nk) time for k-node graphlets in a network of size N. Recently, many works introduced carefully designed combinatorial and sampling methods with encouraging results. However, the existing methods ignore the fact that graphlet counts and the graph structural information are correlated. They always consider a graph as a new input and repeat the tedious counting procedure on a regular basis even if it is similar or exactly isomorphic to previously studied graphs. This provides an opportunity to speed up the graphlet count estimation procedure by exploiting this correlation via learning methods. In this paper, we raise a novel graphlet count learning (GCL) problem: given a set of historical graphs with known graphlet counts, how to learn to estimate/predict graphlet count for unseen graphs coming from the same (or similar) underlying distribution. We develop a deep learning framework which contains two convolutional neural network models and a series of data preprocessing techniques to solve the GCL problem. Extensive experiments are conducted on three types of synthetic random graphs and three types of real-world graphs for all 3-, 4-, and 5-node graphlets to demonstrate the accuracy, efficiency, and generalizability of our framework. Compared with state-of-the-art exact/sampling methods, our framework shows great potential, which can offer up to two orders of magnitude speedup on synthetic graphs and achieve on par speed on real-world graphs with competitive accuracy.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:netsci:v:9:y:2021:i:s1:p:s23-s60_3
Access Statistics for this article
More articles in Network Science from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().