THE STATISTICAL CHALLENGES OF MODELLING COVID-19
Peter Dolton
National Institute Economic Review, 2021, vol. 257, 46-82
Abstract:
In 2020–2021, the world has been gripped by a pandemic that no living person has ever known. The coronavirus pandemic is undoubtedly the greatest challenge the world has faced in over a generation. The imperative of statistical modelling is not only to manage the short-run crisis for the health services, but also to explain the pandemic’s course and establish the effectiveness of different policies, both non-pharmaceutical and with vaccines. This difficult task has been undertaken by the epidemiologists and others in the face of measurement data problems, behavioural complications and endogeneity issues. This paper proposes a simple taxonomy of the alternative different models and suggests how they may be used together to overcome limitations. This perspective may have important implications for how policy-makers cope with future waves or strains in the current pandemic, or future pandemics.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:nierev:v:257:y:2021:i::p:46-82_5
Access Statistics for this article
More articles in National Institute Economic Review from National Institute of Economic and Social Research Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK. Contact information at EDIRC.
Bibliographic data for series maintained by Kirk Stebbing ().