Equation balance in time series analysis: lessons learned and lessons needed
Mark Pickup
Political Science Research and Methods, 2022, vol. 10, issue 4, 890-900
Abstract:
The papers in this symposium use Monte Carlo simulations to demonstrate the consequences of estimating time series models with variables that are of different orders of integration. In this summary, I do the following: very briefly outline what we learn from the papers; identify an apparent contradiction that might increase, rather than decrease, confusion around the concept of a balanced time series model; suggest a resolution; and identify a few areas of research that could further increase our understanding of how variables with different dynamics might be combined. In doing these things, I suggest there is still a lack of clarity around how a research practitioner demonstrates balance, and demonstrates what Pickup and Kellstedt (2021) call I(0) balance.
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:10:y:2022:i:4:p:890-900_16
Access Statistics for this article
More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().