Estimating latent traits from expert surveys: an analysis of sensitivity to data-generating process
Kyle L. Marquardt and
Daniel Pemstein
Political Science Research and Methods, 2023, vol. 11, issue 2, 384-393
Abstract:
Models for converting expert-coded data to estimates of latent concepts assume different data-generating processes (DGPs). In this paper, we simulate ecologically valid data according to different assumptions, and examine the degree to which common methods for aggregating expert-coded data (1) recover true values and (2) construct appropriate coverage intervals. We find that the mean and both hierarchical Aldrich–McKelvey (A–M) scaling and hierarchical item-response theory (IRT) models perform similarly when expert error is low; the hierarchical latent variable models (A-M and IRT) outperform the mean when expert error is high. Hierarchical A–M and IRT models generally perform similarly, although IRT models are often more likely to include true values within their coverage intervals. The median and non-hierarchical latent variable models perform poorly under most assumed DGPs.
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:11:y:2023:i:2:p:384-393_11
Access Statistics for this article
More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().