EconPapers    
Economics at your fingertips  
 

Computing quantities of interest and their uncertainty using Bayesian simulation

Andreas Murr, Richard Traunmüller and Jeff Gill

Political Science Research and Methods, 2023, vol. 11, issue 3, 623-632

Abstract: When analyzing data, researchers are often less interested in the parameters of statistical models than in functions of these parameters such as predicted values. Here we show that Bayesian simulation with Markov-Chain Monte Carlo tools makes it easy to compute these quantities of interest with their uncertainty. We illustrate how to produce customary and relatively new quantities of interest such as variable importance ranking, posterior predictive data, difficult marginal effects, and model comparison statistics to allow researchers to report more informative results.

Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:11:y:2023:i:3:p:623-632_12

Access Statistics for this article

More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:pscirm:v:11:y:2023:i:3:p:623-632_12