To Lag or Not to Lag?: Re-Evaluating the Use of Lagged Dependent Variables in Regression Analysis*
Arjun S. Wilkins
Political Science Research and Methods, 2018, vol. 6, issue 2, 393-411
Abstract:
Lagged dependent variables (LDVs) have been used in regression analysis to provide robust estimates of the effects of independent variables, but some research argues that using LDVs in regressions produces negatively biased coefficient estimates, even if the LDV is part of the data-generating process. I demonstrate that these concerns are easily resolved by specifying a regression model that accounts for autocorrelation in the error term. This actually implies that more LDV and lagged independent variables should be included in the specification, not fewer. Including the additional lags yields more accurate parameter estimates, which I demonstrate using the same data-generating process scholars had previously used to argue against including LDVs. I use Monte Carlo simulations to show that this specification returns much more accurate coefficient estimates for independent variables (across a wide range of parameter values) than alternatives considered in earlier research. The simulation results also indicate that improper exclusion of LDVs can lead to severe bias in coefficient estimates. While no panacea, scholars should continue to confidently include LDVs as part of a robust estimation strategy.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:6:y:2018:i:02:p:393-411_00
Access Statistics for this article
More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().