EconPapers    
Economics at your fingertips  
 

Assessing the Impact of Non-Random Measurement Error on Inference: A Sensitivity Analysis Approach

Max Gallop and Simon Weschle

Political Science Research and Methods, 2019, vol. 7, issue 2, 367-384

Abstract: Many commonly used data sources in the social sciences suffer from non-random measurement error, understood as mis-measurement of a variable that is systematically related to another variable. We argue that studies relying on potentially suspect data should take the threat this poses to inference seriously and address it routinely in a principled manner. In this article, we aid researchers in this task by introducing a sensitivity analysis approach to non-random measurement error. The method can be used for any type of data or statistical model, is simple to execute, and straightforward to communicate. This makes it possible for researchers to routinely report the robustness of their inference to the presence of non-random measurement error. We demonstrate the sensitivity analysis approach by applying it to two recent studies.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:7:y:2019:i:02:p:367-384_00

Access Statistics for this article

More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:pscirm:v:7:y:2019:i:02:p:367-384_00