EconPapers    
Economics at your fingertips  
 

Statistical inference for multilayer networks in political science

Ted Hsuan Yun Chen

Political Science Research and Methods, 2021, vol. 9, issue 2, 380-397

Abstract: Interactions between units in political systems often occur across multiple relational contexts. These relational systems feature interdependencies that result in inferential shortcomings and poorly-fitting models when ignored. General advancements in inferential network analysis have improved our ability to understand relational systems featuring interdependence, but developments specific to working with interdependence that cross relational contexts remain sparse. In this paper, I introduce a multilayer network approach to modeling systems comprising multiple relations using the exponential random graph model. In two substantive applications, the first a policy communication network and the second a global conflict network, I demonstrate that the multilayer approach affords inferential leverage and produces models that better fit observed data.

Date: 2021
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:9:y:2021:i:2:p:380-397_10

Access Statistics for this article

More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2021-03-24
Handle: RePEc:cup:pscirm:v:9:y:2021:i:2:p:380-397_10