EconPapers    
Economics at your fingertips  
 

Estimating logit models with small samples

Carlisle Rainey and Kelly McCaskey

Political Science Research and Methods, 2021, vol. 9, issue 3, 549-564

Abstract: In small samples, maximum likelihood (ML) estimates of logit model coefficients have substantial bias away from zero. As a solution, we remind political scientists of Firth's (1993, Biometrika, 80, 27–38) penalized maximum likelihood (PML) estimator. Prior research has described and used PML, especially in the context of separation, but its small sample properties remain under-appreciated. The PML estimator eliminates most of the bias and, perhaps more importantly, greatly reduces the variance of the usual ML estimator. Thus, researchers do not face a bias-variance tradeoff when choosing between the ML and PML estimators—the PML estimator has a smaller bias and a smaller variance. We use Monte Carlo simulations and a re-analysis of George and Epstein (1992, American Political Science Review, 86, 323–337) to show that the PML estimator offers a substantial improvement in small samples (e.g., 50 observations) and noticeable improvement even in larger samples (e.g., 1000 observations).

Date: 2021
References: Add references at CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:pscirm:v:9:y:2021:i:3:p:549-564_7

Access Statistics for this article

More articles in Political Science Research and Methods from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2021-07-15
Handle: RePEc:cup:pscirm:v:9:y:2021:i:3:p:549-564_7