Processing unreliable judgements with an imprecise hierarchical model
Igor O. Kozine and
Lev V. Utkin
Risk, Decision and Policy, 2002, vol. 7, issue 3, 325-339
Abstract:
In processing expert judgements, it is common to assign experts’ opinions different degrees of plausibility or probability. This results in the necessity of constructing some kind of hierarchical model. Hierarchical models are widely used in Bayesian inference. Several models have been proposed by the adherents of imprecise statistical reasoning. This paper describes a new hierarchical uncertainty model of a more general form: first- and second-order uncertainty models are both imprecise. We demonstrate that depending on what kind of evidence the modeller has at hand and the reliability quantifying the quality of expert judgement one comes to different rules of combination. It is shown that the rules of combination known in imprecise statistical reasoning can be inferred from the approach proposed in the paper. We describe how the model can be used to generate first-order coherent interval-valued previsions. The paper is concluded by addressing the issue of computing the probability of an event ‘one imprecise value is greater than another’. This case is prominent in light of decision making based on imprecise previsions.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:rdepol:v:7:y:2002:i:03:p:325-339_00
Access Statistics for this article
More articles in Risk, Decision and Policy from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().