Advancements in Self-Supervised Learning for Remote Sensing Scene Classification: Present Innovations and Future Outlooks
José Gabriel Carrasco Ramírez ()
Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, 2024, vol. 4, issue 1, 45-56
Abstract:
Deep learning methodologies have significantly advanced the fields of computer vision and machine learning, enhancing performance across various tasks like classification, regression, and detection. In remote sensing for Earth observation, deep neural networks have propelled state-of-the-art results. However, a major drawback is their dependence on large annotated datasets, necessitating extensive human effort, especially in specialized domains like medical imaging or remote sensing. To mitigate this reliance on annotations, several self-supervised representation learning techniques have emerged, aiming to learn unsupervised image representations applicable to downstream tasks such as image classification, object detection, or semantic segmentation. Consequently, self-supervised learning approaches have gained traction in remote sensing. This article surveys the foundational principles of various self-supervised methods, focusing on scene classification tasks. We elucidate key contributions, analyze experimental setups, and synthesize findings from each study. Furthermore, we conduct comprehensive experiments on two public scene classification datasets to evaluate and benchmark different self-supervised models
Keywords: self-supervised learning; representation learning; scene classification; remote sensing (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://newjaigs.com/index.php/JAIGS/article/view/80 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:das:njaigs:v:4:y:2024:i:1:p:45-56:id:80
Access Statistics for this article
Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 is currently edited by Justyna Żywiołek
More articles in Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 from Open Knowledge
Bibliographic data for series maintained by Open Knowledge ().