AI-Driven Risk Management Strategies in Financial Technology
Harsh Daiya ()
Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, 2024, vol. 5, issue 1, 194-216
Abstract:
The integration of Artificial Intelligence (AI) into financial technology (FinTech) has revolutionized risk management strategies, offering innovative solutions to longstanding challenges. This paper explores the transformative potential of AI-driven risk management in the financial sector, focusing on predictive accuracy, fraud detection, and regulatory compliance. Employing a mixed-methods approach, the study combines quantitative data from surveys and questionnaires with qualitative insights from interviews and case studies. The findings highlight AI's ability to enhance risk assessment, improve fraud prevention, and optimize compliance processes, thereby creating a more secure and efficient financial environment. Despite the significant benefits, the study also identifies challenges, including regulatory adaptation and ethical considerations. The research concludes with recommendations for stakeholders to effectively implement AI-driven risk management strategies, ensuring a balance between innovation and security.
Keywords: Artificial Intelligence; Financial Technology; Risk Management; FinTech; Predictive Analytics (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://newjaigs.com/index.php/JAIGS/article/view/194 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:das:njaigs:v:5:y:2024:i:1:p:194-216:id:194
Access Statistics for this article
Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 is currently edited by Justyna Żywiołek
More articles in Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 from Open Knowledge
Bibliographic data for series maintained by Open Knowledge ().