GPU-Optimized Image Processing and Generation Based on Deep Learning and Computer Vision
Yiyu Lin (),
Ang Li (),
Huixiang Li (),
Yadong Shi () and
Xiaoan Zhan ()
Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, 2024, vol. 5, issue 1, 39-49
Abstract:
In recent years, deep learning has become a core technology in many fields such as computer vision. The parallel processing capability of GPU, greatly accelerates the training and inference of deep learning models, especially in the field of image processing and generation. This paper discusses the cooperation and differences between deep learning and traditional computer vision technology and focuses on the significant advantages of GPU in medical image processing applications such as image reconstruction, filter enhancement, image registration, matching, and fusion. This convergence not only improves the efficiency and quality of image processing, but also promotes the accuracy and speed of medical diagnosis, and looks forward to the future application and development of deep learning and GPU optimization in various industries.
Keywords: Deep learning; Computer vision; GPU accelerates medical image processing (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://newjaigs.com/index.php/JAIGS/article/view/162 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:das:njaigs:v:5:y:2024:i:1:p:39-49:id:162
Access Statistics for this article
Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 is currently edited by Justyna Żywiołek
More articles in Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 from Open Knowledge
Bibliographic data for series maintained by Open Knowledge ().