EconPapers    
Economics at your fingertips  
 

Personalized UI Layout Generation using Deep Learning: An Adaptive Interface Design Approach for Enhanced User Experience

Xiaoan Zhan (), Yang Xu () and Yingchia Liu ()

Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, 2024, vol. 6, issue 1, 463-478

Abstract: This study presents a new approach to personalized UI design using deep learning techniques to improve user experience through interface customization. We propose a hybrid VAE-GAN architecture combining variational autoencoders and generative adversarial networks to create coherent and user-specific UI layouts. The system includes user-friendly electronic models that capture personal preferences and behaviors, enabling real-time personalization of interactions. Our methodology leverages large-scale UI design datasets, and user interaction logs to train and evaluate the model. Experimental results demonstrate significant improvements in layout quality, personalization accuracy, and user satisfaction compared to existing approaches. A customer research study with 200 participants from different cultures proves the effectiveness of the personalization model in real situations. The system achieves a personalization accuracy of 0.89 ± 0.03 and a transfer speed of 1.2s ± 0.1s, the most efficient state-of-the-art UI personalization system. In addition, we discuss the theoretical implications of our approach to UI/UX design principles, potential business applications, and ethical considerations around AI-driven identity. This research contributes to advancing adaptive interface design and opens up new ways to integrate deep learning with UI/UX processes.

Keywords: Personalized User Interface; Deep Learning; Adaptive Design; User Experience Optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://newjaigs.com/index.php/JAIGS/article/view/270 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:das:njaigs:v:6:y:2024:i:1:p:463-478:id:270

Access Statistics for this article

Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 is currently edited by Justyna Żywiołek

More articles in Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023 from Open Knowledge
Bibliographic data for series maintained by Open Knowledge ().

 
Page updated 2025-03-19
Handle: RePEc:das:njaigs:v:6:y:2024:i:1:p:463-478:id:270