Pre-trained CNNs: Evaluating Emergency Vehicle Image Classification
Ali Omari Alaoui,
Omaima El Bahi,
Mohamed Rida Fethi,
Othmane Farhaoui,
Ahmad El Allaoui and
Yousef Farhaoui
Data and Metadata, 2023, vol. 2, 153
Abstract:
In this paper, we aim to provide a comprehensive analysis of image classification, specifically in the context of emergency vehicle classification. We have conducted an in-depth investigation, exploring the effectiveness of six pre-trained Convolutional Neural Network (CNN) models. These models, namely VGG19, VGG16, MobileNetV3Large, MobileNetV3Small, MobileNetV2, and MobileNetV1, have been thoroughly examined and evaluated within the domain of emergency vehicle classification. The research methodology utilized in this study is carefully designed with a systematic approach. It includes the thorough preparation of datasets, deliberate modifications to the model architecture, careful selection of layer operations, and fine-tuning of the model compilation. To gain a comprehensive understanding of the performance, we conducted a detailed series of experiments. We analyzed nuanced performance metrics such as accuracy, loss, and training time, considering important factors in the evaluation process. The results obtained from this study provide a comprehensive understanding of the advantages and disadvantages of each model. Moreover, they emphasize the crucial significance of carefully choosing a suitable pre-trained Convolutional Neural Network (CNN) model for image classification tasks. Essentially, this article provides a comprehensive overview of image classification, highlighting the crucial significance of pre-trained CNN models in achieving precise outcomes, especially in the demanding field of emergency vehicle classification
Date: 2023
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:2:y:2023:i::p:153:id:1056294dm2023153
DOI: 10.56294/dm2023153
Access Statistics for this article
More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().