EconPapers    
Economics at your fingertips  
 

Mobile-Based Skin Cancer Classification System Using Convolutional Neural Network

Ihsanul Insan Aljundi, Dony Novaliendry, Yeka Hendriyani and Syafrijon Syafrijon

Data and Metadata, 2024, vol. 3, .649

Abstract: Introduction: Skin cancer is a growing concern worldwide, often exacerbated by limited awareness and accessibility to diagnostic tools. Early detection is critical for improving survival rates and patient outcomes. This study developed a convolutional neural network (CNN) algorithm integrated into a mobile application to address this issue. Methods: The researchers employed an agile methodology to design and implement a CNN-based skin cancer detection system using the VGG16 architecture. A dataset of skin cancer images from the International Skin Imaging Collaboration (ISIC) was used, consisting of 1,500 images divided into six classes. The model was trained on 1,200 images and tested on 300 images. Preprocessing steps included resizing images to 224x224 pixels, normalization, and image augmentation to enhance model generalization. Results: The trained model achieved a test accuracy of 86.67% in classifying skin cancer types, with the highest performance for healthy skin (100% accuracy) and melanoma (98% recall). The mobile application allows users to upload or capture images of skin lesions and receive automated classification results, including lesion characteristics such as asymmetry, border, color, and diameter. Additional features include user authentication and history tracking, enhancing usability and accessibility. Conclusions: The study successfully developed a reliable CNN-based skin cancer detection system integrated into a user-friendly mobile application. The application provides a valuable tool for early detection and awareness of skin cancer. Future work should focus on clinical validation, expanding the dataset to include diverse populations, and optimizing the system for mobile deployment

Date: 2024
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:3:y:2024:i::p:.649:id:1056294dm2024649

DOI: 10.56294/dm2024.649

Access Statistics for this article

More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().

 
Page updated 2025-09-21
Handle: RePEc:dbk:datame:v:3:y:2024:i::p:.649:id:1056294dm2024649