EconPapers    
Economics at your fingertips  
 

Optimizing Energy Consumption in 5G HetNets: A Coordinated Approach for Multi-Level Picocell Sleep Mode with Q-Learning

Macoumba Fall, Mohammed Fattah, Mohammed Mahfoudi, Younes Balboul, Said Mazer, Moulhime El Bekkali and Ahmed D. Kora

Data and Metadata, 2024, vol. 3, 333

Abstract: Cell standby, particularly picocell sleep mode (SM), is a prominent strategy for reducing energy consumption in 5G networks. The emergence of multi-state sleep states necessitates new optimization approaches. This paper proposes a novel energy optimization strategy for 5G heterogeneous networks (HetNets) that leverages macrocell-picocell coordination and machine learning. The proposed strategy focuses on managing the four available picocell sleep states. The picocell manages the first three states using the Q-learning algorithm, an efficient reinforcement learning technique. The associated macrocell based on picocell energy efficiency controls the final, deeper sleep state. This hierarchical approach leverages localized and network-wide control strengths for optimal energy savings. By capitalizing on macrocell-picocell coordination and machine learning, this work presents a promising solution for achieving significant energy reduction in 5G HetNets while maintaining network performance

Date: 2024
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:3:y:2024:i::p:333:id:1056294dm2024333

DOI: 10.56294/dm2024333

Access Statistics for this article

More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().

 
Page updated 2025-09-21
Handle: RePEc:dbk:datame:v:3:y:2024:i::p:333:id:1056294dm2024333