Mobile app for real-time academic attendance registration based on MobileFaceNet Convolutional neural network
Edison Guaichico,
Marco Pusdá-Chulde,
MacArthur Ortega-Bustamante,
Pedro Granda and
Iván García-Santillán
Data and Metadata, 2025, vol. 4, 193
Abstract:
The attendance record monitors the student's participation in university academic activities, reflecting the commitment to their professional training. However, traditional systems require moderate time to perform this activity and can be susceptible to fraud and errors. In today's technological landscape, facial recognition has become an effective solution to problems in various fields. Currently, all university professors own smartphones. Considering this advantage, this article proposes to develop a mobile application for the registration of academic attendance using advanced artificial intelligence technologies such as Multitasking Cascade Convolutional Networks (MTCNN) in facial detection, MobileFaceNet in facial feature extraction (facial vector) and the Euclidean distance function in the calculation of similarity between obtained vectors. MobileFaceNet was evaluated in Python, using a personalized dataset of top-level students of the Software career of the Universidad Técnica del Norte, achieving an accuracy of 98.9% and 99.4% in LWF. The models were then integrated into a mobile app developed with Android Studio. Finally, the time required to register attendance was compared using the university academic platform (SIIU) and the facial recognition mobile application. The benchmarking showed a 24-second reduction of 33% in attendance registration time.
Date: 2025
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:dbk:datame:v:4:y:2025:i::p:193:id:1056294dm2025193
DOI: 10.56294/dm2025193
Access Statistics for this article
More articles in Data and Metadata from AG Editor
Bibliographic data for series maintained by Javier Gonzalez-Argote ().